Processing math: 100%
Subalgebra G12+A21E16
75 out of 119
Computations done by the calculator project.

Subalgebra type: G12+A21 (click on type for detailed printout).
Subalgebra is (parabolically) induced from G12 .
Centralizer: T1 (toral part, subscript = dimension).
The semisimple part of the centralizer of the semisimple part of my centralizer: E16
Basis of Cartan of centralizer: 1 vectors: (1, 0, -1, 0, 1, -1)

Elements Cartan subalgebra scaled to act by two by components: G12: (2, 3, 4, 6, 4, 2): 6, (-1, -1, -2, -3, -2, -1): 2, A21: (1, 0, 1, 0, 1, 1): 4
Dimension of subalgebra generated by predefined or computed generators: 17.
Negative simple generators: g29+g30+g31, g35, g7g11
Positive simple generators: g31+g30+g29, g35, g11+g7
Cartan symmetric matrix: (2/310120001)
Scalar products of elements of Cartan subalgebra scaled to act by 2 (co-symmetric Cartan matrix): (630320004)
Decomposition of ambient Lie algebra: Vω1+2ω3V2ω32Vω1+ω32Vω3Vω2Vω1V0
Primal decomposition of the ambient Lie algebra. This decomposition refines the above decomposition (please note the order is not the same as above). Vω1+ω3+6ψVω3+6ψVω1+2ω3V2ω3Vω2Vω1V0Vω1+ω36ψVω36ψ
In the table below we indicate the highest weight vectors of the decomposition of the ambient Lie algebra as a module over the semisimple part. The second row indicates weights of the highest weight vectors relative to the Cartan of the semisimple subalgebra. As the centralizer is well-chosen and the centralizer of our subalgebra is non-trivial, we may in addition split highest weight vectors with the same weight over the semisimple part over the centralizer (recall that the centralizer preserves the weights over the subalgebra and in particular acts on the highest weight vectors). Therefore we have chosen our highest weight vectors to be, in addition, weight vectors over the Cartan of the centralizer of the starting subalgebra. Their weight over the sum of the Cartans of the semisimple subalgebra and its centralizer is indicated in the third row. The weights corresponding to the Cartan of the centralizer are again indicated with the letter \omega. As there is no preferred way of chosing a basis of the Cartan of the centralizer (unlike the starting semisimple Lie algebra: there we have a preferred basis induced by the fundamental weights), our centralizer weights are simply given by the constant by which the k^th basis element of the Cartan of the centralizer acts on the highest weight vector. Here, we use the choice for basis of the Cartan of the centralizer given at the start of the page.

Highest vectors of representations (total 9) ; the vectors are over the primal subalgebra.h6+h5h3+h1g20+2g19+g17g2g6+g3g5+g1g25g22g11+g7g27
weight0ω1ω2ω3ω3ω1+ω3ω1+ω32ω3ω1+2ω3
weights rel. to Cartan of (centralizer+semisimple s.a.). 0ω1ω2ω36ψω3+6ψω1+ω36ψω1+ω3+6ψ2ω3ω1+2ω3
Isotypic module decomposition over primal subalgebra (total 9 isotypic components).
Isotypical components + highest weightV0 → (0, 0, 0, 0)Vω1 → (1, 0, 0, 0)Vω2 → (0, 1, 0, 0)Vω36ψ → (0, 0, 1, -6)Vω3+6ψ → (0, 0, 1, 6)Vω1+ω36ψ → (1, 0, 1, -6)Vω1+ω3+6ψ → (1, 0, 1, 6)V2ω3 → (0, 0, 2, 0)Vω1+2ω3 → (1, 0, 2, 0)
Module label W1W2W3W4W5W6W7W8W9
Module elements (weight vectors). In blue - corresp. F element. In red -corresp. H element. Cartan of centralizer component.
h6+h5h3+h1
g20+2g19+g17
g12+2g15g16
g31+2g30g29
h6+h5+h3h1
2g294g30+2g31
2g16+4g15+2g12
2g174g19+2g20
Semisimple subalgebra component.
g2
g36
g20+g19g17
2g122g152g16
6g35
2g312g302g29
6h6+12h5+18h4+12h3+6h2+6h1
4h6+8h5+12h4+8h3+6h2+4h1
6g29+6g30+6g31
12g35
6g166g15+6g12
12g1712g1912g20
36g36
36g2
g6+g3
g1+g5
g5+g1
g3+g6
g25
g10
g13
g32
g18
g6+g3
g28
2g26
g1g5
2g21
2g33
2g14
2g9
2g22
g22
g9
g14
g33
g21
g5+g1
g26
2g28
g3g6
2g18
2g32
2g13
2g10
2g25
Semisimple subalgebra component.
g11g7
h6+h5+h3+h1
2g72g11
g27
g4
g20+g17
g34
g12+g16
2g8
g11+g7
g31+g29
2g24
2g23
h6+h5h3h1
2g23
2g24
2g29+2g31
2g72g11
2g8
2g16+2g12
4g34
2g172g20
4g4
4g27
Weights of elements in fundamental coords w.r.t. Cartan of subalgebra in same order as above0ω1
ω1+ω2
2ω1ω2
0
2ω1+ω2
ω1ω2
ω1
ω2
3ω1ω2
ω1
ω1+ω2
3ω1+2ω2
2ω1ω2
0
0
2ω1+ω2
3ω12ω2
ω1ω2
ω1
3ω1+ω2
ω2
ω3
ω3
ω3
ω3
ω1+ω3
ω1+ω2+ω3
ω1ω3
2ω1ω2+ω3
ω1+ω2ω3
ω3
2ω1ω2ω3
2ω1+ω2+ω3
ω3
ω1ω2+ω3
2ω1+ω2ω3
ω1+ω3
ω1ω2ω3
ω1ω3
ω1+ω3
ω1+ω2+ω3
ω1ω3
2ω1ω2+ω3
ω1+ω2ω3
ω3
2ω1ω2ω3
2ω1+ω2+ω3
ω3
ω1ω2+ω3
2ω1+ω2ω3
ω1+ω3
ω1ω2ω3
ω1ω3
2ω3
0
2ω3
ω1+2ω3
ω1+ω2+2ω3
ω1
2ω1ω2+2ω3
ω1+ω2
ω12ω3
2ω3
2ω1ω2
ω1+ω22ω3
2ω1+ω2+2ω3
0
2ω1ω22ω3
ω1ω2+2ω3
2ω1+ω2
2ω3
ω1+2ω3
ω1ω2
2ω1+ω22ω3
ω1
ω1ω22ω3
ω12ω3
Weights of elements in (fundamental coords w.r.t. Cartan of subalgebra) + Cartan centralizer0ω1
ω1+ω2
2ω1ω2
0
2ω1+ω2
ω1ω2
ω1
ω2
3ω1ω2
ω1
ω1+ω2
3ω1+2ω2
2ω1ω2
0
0
2ω1+ω2
3ω12ω2
ω1ω2
ω1
3ω1+ω2
ω2
ω36ψ
ω36ψ
ω3+6ψ
ω3+6ψ
ω1+ω36ψ
ω1+ω2+ω36ψ
ω1ω36ψ
2ω1ω2+ω36ψ
ω1+ω2ω36ψ
ω36ψ
2ω1ω2ω36ψ
2ω1+ω2+ω36ψ
ω36ψ
ω1ω2+ω36ψ
2ω1+ω2ω36ψ
ω1+ω36ψ
ω1ω2ω36ψ
ω1ω36ψ
ω1+ω3+6ψ
ω1+ω2+ω3+6ψ
ω1ω3+6ψ
2ω1ω2+ω3+6ψ
ω1+ω2ω3+6ψ
ω3+6ψ
2ω1ω2ω3+6ψ
2ω1+ω2+ω3+6ψ
ω3+6ψ
ω1ω2+ω3+6ψ
2ω1+ω2ω3+6ψ
ω1+ω3+6ψ
ω1ω2ω3+6ψ
ω1ω3+6ψ
2ω3
0
2ω3
ω1+2ω3
ω1+ω2+2ω3
ω1
2ω1ω2+2ω3
ω1+ω2
ω12ω3
2ω3
2ω1ω2
ω1+ω22ω3
2ω1+ω2+2ω3
0
2ω1ω22ω3
ω1ω2+2ω3
2ω1+ω2
2ω3
ω1+2ω3
ω1ω2
2ω1+ω22ω3
ω1
ω1ω22ω3
ω12ω3
Single module character over Cartan of s.a.+ Cartan of centralizer of s.a.M0Mω1M2ω1ω2Mω1+ω2M0Mω1ω2M2ω1+ω2Mω1M3ω1ω2Mω2Mω1M2ω1ω2M3ω12ω2Mω1+ω22M0Mω1ω2M3ω1+2ω2M2ω1+ω2Mω1Mω2M3ω1+ω2Mω36ψMω36ψMω3+6ψMω3+6ψMω1+ω36ψM2ω1ω2+ω36ψMω1+ω2+ω36ψMω36ψMω1ω2+ω36ψM2ω1+ω2+ω36ψMω1+ω36ψMω1ω36ψM2ω1ω2ω36ψMω1+ω2ω36ψMω36ψMω1ω2ω36ψM2ω1+ω2ω36ψMω1ω36ψMω1+ω3+6ψM2ω1ω2+ω3+6ψMω1+ω2+ω3+6ψMω3+6ψMω1ω2+ω3+6ψM2ω1+ω2+ω3+6ψMω1+ω3+6ψMω1ω3+6ψM2ω1ω2ω3+6ψMω1+ω2ω3+6ψMω3+6ψMω1ω2ω3+6ψM2ω1+ω2ω3+6ψMω1ω3+6ψM2ω3M0M2ω3Mω1+2ω3M2ω1ω2+2ω3Mω1+ω2+2ω3M2ω3Mω1ω2+2ω3M2ω1+ω2+2ω3Mω1+2ω3Mω1M2ω1ω2Mω1+ω2M0Mω1ω2M2ω1+ω2Mω1Mω12ω3M2ω1ω22ω3Mω1+ω22ω3M2ω3Mω1ω22ω3M2ω1+ω22ω3Mω12ω3
Isotypic characterM0Mω1M2ω1ω2Mω1+ω2M0Mω1ω2M2ω1+ω2Mω1M3ω1ω2Mω2Mω1M2ω1ω2M3ω12ω2Mω1+ω22M0Mω1ω2M3ω1+2ω2M2ω1+ω2Mω1Mω2M3ω1+ω2Mω36ψMω36ψMω3+6ψMω3+6ψMω1+ω36ψM2ω1ω2+ω36ψMω1+ω2+ω36ψMω36ψMω1ω2+ω36ψM2ω1+ω2+ω36ψMω1+ω36ψMω1ω36ψM2ω1ω2ω36ψMω1+ω2ω36ψMω36ψMω1ω2ω36ψM2ω1+ω2ω36ψMω1ω36ψMω1+ω3+6ψM2ω1ω2+ω3+6ψMω1+ω2+ω3+6ψMω3+6ψMω1ω2+ω3+6ψM2ω1+ω2+ω3+6ψMω1+ω3+6ψMω1ω3+6ψM2ω1ω2ω3+6ψMω1+ω2ω3+6ψMω3+6ψMω1ω2ω3+6ψM2ω1+ω2ω3+6ψMω1ω3+6ψM2ω3M0M2ω3Mω1+2ω3M2ω1ω2+2ω3Mω1+ω2+2ω3M2ω3Mω1ω2+2ω3M2ω1+ω2+2ω3Mω1+2ω3Mω1M2ω1ω2Mω1+ω2M0Mω1ω2M2ω1+ω2Mω1Mω12ω3M2ω1ω22ω3Mω1+ω22ω3M2ω3Mω1ω22ω3M2ω1+ω22ω3Mω12ω3

Semisimple subalgebra: W_{3}+W_{8}
Centralizer extension: W_{1}

Weight diagram. The coordinates corresponding to the simple roots of the subalgerba are fundamental.
The bilinear form is therefore given relative to the fundamental coordinates.
Canvas not supported




Mouse position: (0.00, 0.00)
Selected index: -1
Coordinate center in screen coordinates:
(200.00, 367.50)
The projection plane (drawn on the screen) is spanned by the following two vectors.
(1.00, 0.00, 0.00, 0.00)
(0.00, 1.00, 0.00, 0.00)
0: (1.00, 0.00, 0.00, 0.00): (266.67, 467.50)
1: (0.00, 1.00, 0.00, 0.00): (300.00, 567.50)
2: (0.00, 0.00, 1.00, 0.00): (200.00, 367.50)
3: (0.00, 0.00, 0.00, 1.00): (200.00, 367.50)



Made total 1471286 arithmetic operations while solving the Serre relations polynomial system.
The total number of arithmetic operations I needed to solve the Serre relations polynomial system was larger than 1 000 000. I am printing out the Serre relations system for you: maybe that can help improve the polynomial system algorithms.
Subalgebra realized.
3*2 (unknown) gens:
(
x_{1} g_{-29}+x_{2} g_{-30}+x_{3} g_{-31}, x_{9} g_{31}+x_{8} g_{30}+x_{7} g_{29},
x_{4} g_{35}, x_{10} g_{-35},
x_{5} g_{-7}+x_{6} g_{-11}, x_{12} g_{11}+x_{11} g_{7})
h: (2/3, 1, 4/3, 2, 4/3, 2/3), e = combination of g_{29} g_{30} g_{31} , f= combination of g_{-29} g_{-30} g_{-31} h: (-1, -1, -2, -3, -2, -1), e = combination of g_{-35} , f= combination of g_{35} h: (1, 0, 1, 0, 1, 1), e = combination of g_{7} g_{11} , f= combination of g_{-7} g_{-11} Positive weight subsystem: 7 vectors: (1, 0, 0), (0, 1, 0), (0, 0, 1), (1, 1, 0), (2, 1, 0), (3, 1, 0), (3, 2, 0)
Symmetric Cartan default scale: \begin{pmatrix}
2/3 & -1 & 0\\
-1 & 2 & 0\\
0 & 0 & 2\\
\end{pmatrix}Character ambient Lie algebra: V_{\omega_{1}+2\omega_{3}}+V_{2\omega_{1}-\omega_{2}+2\omega_{3}}+V_{-\omega_{1}+\omega_{2}+2\omega_{3}}+2V_{2\omega_{3}}+V_{\omega_{1}-\omega_{2}+2\omega_{3}}+2V_{\omega_{1}+\omega_{3}}+2V_{2\omega_{1}-\omega_{2}+\omega_{3}}+V_{3\omega_{1}-\omega_{2}}+V_{-2\omega_{1}+\omega_{2}+2\omega_{3}}+V_{-\omega_{1}+2\omega_{3}}+2V_{-\omega_{1}+\omega_{2}+\omega_{3}}+4V_{\omega_{3}}+2V_{\omega_{1}-\omega_{2}+\omega_{3}}+V_{\omega_{2}}+3V_{\omega_{1}}+3V_{2\omega_{1}-\omega_{2}}+V_{3\omega_{1}-2\omega_{2}}+2V_{-2\omega_{1}+\omega_{2}+\omega_{3}}+2V_{-\omega_{1}+\omega_{3}}+3V_{-\omega_{1}+\omega_{2}}+6V_{0}+3V_{\omega_{1}-\omega_{2}}+2V_{\omega_{1}-\omega_{3}}+2V_{2\omega_{1}-\omega_{2}-\omega_{3}}+V_{-3\omega_{1}+2\omega_{2}}+3V_{-2\omega_{1}+\omega_{2}}+3V_{-\omega_{1}}+V_{-\omega_{2}}+2V_{-\omega_{1}+\omega_{2}-\omega_{3}}+4V_{-\omega_{3}}+2V_{\omega_{1}-\omega_{2}-\omega_{3}}+V_{\omega_{1}-2\omega_{3}}+V_{2\omega_{1}-\omega_{2}-2\omega_{3}}+V_{-3\omega_{1}+\omega_{2}}+2V_{-2\omega_{1}+\omega_{2}-\omega_{3}}+2V_{-\omega_{1}-\omega_{3}}+V_{-\omega_{1}+\omega_{2}-2\omega_{3}}+2V_{-2\omega_{3}}+V_{\omega_{1}-\omega_{2}-2\omega_{3}}+V_{-2\omega_{1}+\omega_{2}-2\omega_{3}}+V_{-\omega_{1}-2\omega_{3}}
A necessary system to realize the candidate subalgebra.
x_{2} x_{8} +x_{1} x_{7} -2= 0
x_{3} x_{9} +x_{2} x_{8} +x_{1} x_{7} -3= 0
x_{3} x_{9} +x_{2} x_{8} +2x_{1} x_{7} -4= 0
2x_{3} x_{9} +x_{2} x_{8} +x_{1} x_{7} -4= 0
x_{3} x_{9} +x_{2} x_{8} -2= 0
x_{3} x_{12} +x_{1} x_{11} = 0
x_{7} x_{12} +x_{9} x_{11} = 0
x_{1} x_{6} +x_{3} x_{5} = 0
x_{4} x_{10} -1= 0
x_{5} x_{11} -1= 0
x_{6} x_{12} -1= 0
x_{6} x_{9} +x_{5} x_{7} = 0
The above system after transformation.
x_{2} x_{8} +x_{1} x_{7} -2= 0
x_{3} x_{9} +x_{2} x_{8} +x_{1} x_{7} -3= 0
x_{3} x_{9} +x_{2} x_{8} +2x_{1} x_{7} -4= 0
2x_{3} x_{9} +x_{2} x_{8} +x_{1} x_{7} -4= 0
x_{3} x_{9} +x_{2} x_{8} -2= 0
x_{3} x_{12} +x_{1} x_{11} = 0
x_{7} x_{12} +x_{9} x_{11} = 0
x_{1} x_{6} +x_{3} x_{5} = 0
x_{4} x_{10} -1= 0
x_{5} x_{11} -1= 0
x_{6} x_{12} -1= 0
x_{6} x_{9} +x_{5} x_{7} = 0
For the calculator:
(DynkinType =G^{1}_2+A^{2}_1; ElementsCartan =((2/3, 1, 4/3, 2, 4/3, 2/3), (-1, -1, -2, -3, -2, -1), (1, 0, 1, 0, 1, 1)); generators =(x_{1} g_{-29}+x_{2} g_{-30}+x_{3} g_{-31}, x_{9} g_{31}+x_{8} g_{30}+x_{7} g_{29}, x_{4} g_{35}, x_{10} g_{-35}, x_{5} g_{-7}+x_{6} g_{-11}, x_{12} g_{11}+x_{11} g_{7}) );
FindOneSolutionSerreLikePolynomialSystem{}( x_{2} x_{8} +x_{1} x_{7} -2, x_{3} x_{9} +x_{2} x_{8} +x_{1} x_{7} -3, x_{3} x_{9} +x_{2} x_{8} +2x_{1} x_{7} -4, 2x_{3} x_{9} +x_{2} x_{8} +x_{1} x_{7} -4, x_{3} x_{9} +x_{2} x_{8} -2, x_{3} x_{12} +x_{1} x_{11} , x_{7} x_{12} +x_{9} x_{11} , x_{1} x_{6} +x_{3} x_{5} , x_{4} x_{10} -1, x_{5} x_{11} -1, x_{6} x_{12} -1, x_{6} x_{9} +x_{5} x_{7} )