Highest vectors of representations (total 9) ; the vectors are over the primal subalgebra. | −h6+h5−h3+h1 | −g20+2g19+g17 | g2 | g6+g3 | −g5+g1 | g25 | g22 | −g11+g7 | g27 |
weight | 0 | ω1 | ω2 | ω3 | ω3 | ω1+ω3 | ω1+ω3 | 2ω3 | ω1+2ω3 |
weights rel. to Cartan of (centralizer+semisimple s.a.). | 0 | ω1 | ω2 | ω3−6ψ | ω3+6ψ | ω1+ω3−6ψ | ω1+ω3+6ψ | 2ω3 | ω1+2ω3 |
Isotypical components + highest weight | V0 → (0, 0, 0, 0) | Vω1 → (1, 0, 0, 0) | Vω2 → (0, 1, 0, 0) | Vω3−6ψ → (0, 0, 1, -6) | Vω3+6ψ → (0, 0, 1, 6) | Vω1+ω3−6ψ → (1, 0, 1, -6) | Vω1+ω3+6ψ → (1, 0, 1, 6) | V2ω3 → (0, 0, 2, 0) | Vω1+2ω3 → (1, 0, 2, 0) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Module label | W1 | W2 | W3 | W4 | W5 | W6 | W7 | W8 | W9 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Module elements (weight vectors). In blue - corresp. F element. In red -corresp. H element. | Cartan of centralizer component.
|
| Semisimple subalgebra component.
|
|
|
|
| Semisimple subalgebra component.
|
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Weights of elements in fundamental coords w.r.t. Cartan of subalgebra in same order as above | 0 | ω1 −ω1+ω2 2ω1−ω2 0 −2ω1+ω2 ω1−ω2 −ω1 | ω2 3ω1−ω2 ω1 −ω1+ω2 −3ω1+2ω2 2ω1−ω2 0 0 −2ω1+ω2 3ω1−2ω2 ω1−ω2 −ω1 −3ω1+ω2 −ω2 | ω3 −ω3 | ω3 −ω3 | ω1+ω3 −ω1+ω2+ω3 ω1−ω3 2ω1−ω2+ω3 −ω1+ω2−ω3 ω3 2ω1−ω2−ω3 −2ω1+ω2+ω3 −ω3 ω1−ω2+ω3 −2ω1+ω2−ω3 −ω1+ω3 ω1−ω2−ω3 −ω1−ω3 | ω1+ω3 −ω1+ω2+ω3 ω1−ω3 2ω1−ω2+ω3 −ω1+ω2−ω3 ω3 2ω1−ω2−ω3 −2ω1+ω2+ω3 −ω3 ω1−ω2+ω3 −2ω1+ω2−ω3 −ω1+ω3 ω1−ω2−ω3 −ω1−ω3 | 2ω3 0 −2ω3 | ω1+2ω3 −ω1+ω2+2ω3 ω1 2ω1−ω2+2ω3 −ω1+ω2 ω1−2ω3 2ω3 2ω1−ω2 −ω1+ω2−2ω3 −2ω1+ω2+2ω3 0 2ω1−ω2−2ω3 ω1−ω2+2ω3 −2ω1+ω2 −2ω3 −ω1+2ω3 ω1−ω2 −2ω1+ω2−2ω3 −ω1 ω1−ω2−2ω3 −ω1−2ω3 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Weights of elements in (fundamental coords w.r.t. Cartan of subalgebra) + Cartan centralizer | 0 | ω1 −ω1+ω2 2ω1−ω2 0 −2ω1+ω2 ω1−ω2 −ω1 | ω2 3ω1−ω2 ω1 −ω1+ω2 −3ω1+2ω2 2ω1−ω2 0 0 −2ω1+ω2 3ω1−2ω2 ω1−ω2 −ω1 −3ω1+ω2 −ω2 | ω3−6ψ −ω3−6ψ | ω3+6ψ −ω3+6ψ | ω1+ω3−6ψ −ω1+ω2+ω3−6ψ ω1−ω3−6ψ 2ω1−ω2+ω3−6ψ −ω1+ω2−ω3−6ψ ω3−6ψ 2ω1−ω2−ω3−6ψ −2ω1+ω2+ω3−6ψ −ω3−6ψ ω1−ω2+ω3−6ψ −2ω1+ω2−ω3−6ψ −ω1+ω3−6ψ ω1−ω2−ω3−6ψ −ω1−ω3−6ψ | ω1+ω3+6ψ −ω1+ω2+ω3+6ψ ω1−ω3+6ψ 2ω1−ω2+ω3+6ψ −ω1+ω2−ω3+6ψ ω3+6ψ 2ω1−ω2−ω3+6ψ −2ω1+ω2+ω3+6ψ −ω3+6ψ ω1−ω2+ω3+6ψ −2ω1+ω2−ω3+6ψ −ω1+ω3+6ψ ω1−ω2−ω3+6ψ −ω1−ω3+6ψ | 2ω3 0 −2ω3 | ω1+2ω3 −ω1+ω2+2ω3 ω1 2ω1−ω2+2ω3 −ω1+ω2 ω1−2ω3 2ω3 2ω1−ω2 −ω1+ω2−2ω3 −2ω1+ω2+2ω3 0 2ω1−ω2−2ω3 ω1−ω2+2ω3 −2ω1+ω2 −2ω3 −ω1+2ω3 ω1−ω2 −2ω1+ω2−2ω3 −ω1 ω1−ω2−2ω3 −ω1−2ω3 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Single module character over Cartan of s.a.+ Cartan of centralizer of s.a. | M0 | Mω1⊕M2ω1−ω2⊕M−ω1+ω2⊕M0⊕Mω1−ω2⊕M−2ω1+ω2⊕M−ω1 | M3ω1−ω2⊕Mω2⊕Mω1⊕M2ω1−ω2⊕M3ω1−2ω2⊕M−ω1+ω2⊕2M0⊕Mω1−ω2⊕M−3ω1+2ω2⊕M−2ω1+ω2⊕M−ω1⊕M−ω2⊕M−3ω1+ω2 | Mω3−6ψ⊕M−ω3−6ψ | Mω3+6ψ⊕M−ω3+6ψ | Mω1+ω3−6ψ⊕M2ω1−ω2+ω3−6ψ⊕M−ω1+ω2+ω3−6ψ⊕Mω3−6ψ⊕Mω1−ω2+ω3−6ψ⊕M−2ω1+ω2+ω3−6ψ⊕M−ω1+ω3−6ψ⊕Mω1−ω3−6ψ⊕M2ω1−ω2−ω3−6ψ⊕M−ω1+ω2−ω3−6ψ⊕M−ω3−6ψ⊕Mω1−ω2−ω3−6ψ⊕M−2ω1+ω2−ω3−6ψ⊕M−ω1−ω3−6ψ | Mω1+ω3+6ψ⊕M2ω1−ω2+ω3+6ψ⊕M−ω1+ω2+ω3+6ψ⊕Mω3+6ψ⊕Mω1−ω2+ω3+6ψ⊕M−2ω1+ω2+ω3+6ψ⊕M−ω1+ω3+6ψ⊕Mω1−ω3+6ψ⊕M2ω1−ω2−ω3+6ψ⊕M−ω1+ω2−ω3+6ψ⊕M−ω3+6ψ⊕Mω1−ω2−ω3+6ψ⊕M−2ω1+ω2−ω3+6ψ⊕M−ω1−ω3+6ψ | M2ω3⊕M0⊕M−2ω3 | Mω1+2ω3⊕M2ω1−ω2+2ω3⊕M−ω1+ω2+2ω3⊕M2ω3⊕Mω1−ω2+2ω3⊕M−2ω1+ω2+2ω3⊕M−ω1+2ω3⊕Mω1⊕M2ω1−ω2⊕M−ω1+ω2⊕M0⊕Mω1−ω2⊕M−2ω1+ω2⊕M−ω1⊕Mω1−2ω3⊕M2ω1−ω2−2ω3⊕M−ω1+ω2−2ω3⊕M−2ω3⊕Mω1−ω2−2ω3⊕M−2ω1+ω2−2ω3⊕M−ω1−2ω3 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Isotypic character | M0 | Mω1⊕M2ω1−ω2⊕M−ω1+ω2⊕M0⊕Mω1−ω2⊕M−2ω1+ω2⊕M−ω1 | M3ω1−ω2⊕Mω2⊕Mω1⊕M2ω1−ω2⊕M3ω1−2ω2⊕M−ω1+ω2⊕2M0⊕Mω1−ω2⊕M−3ω1+2ω2⊕M−2ω1+ω2⊕M−ω1⊕M−ω2⊕M−3ω1+ω2 | Mω3−6ψ⊕M−ω3−6ψ | Mω3+6ψ⊕M−ω3+6ψ | Mω1+ω3−6ψ⊕M2ω1−ω2+ω3−6ψ⊕M−ω1+ω2+ω3−6ψ⊕Mω3−6ψ⊕Mω1−ω2+ω3−6ψ⊕M−2ω1+ω2+ω3−6ψ⊕M−ω1+ω3−6ψ⊕Mω1−ω3−6ψ⊕M2ω1−ω2−ω3−6ψ⊕M−ω1+ω2−ω3−6ψ⊕M−ω3−6ψ⊕Mω1−ω2−ω3−6ψ⊕M−2ω1+ω2−ω3−6ψ⊕M−ω1−ω3−6ψ | Mω1+ω3+6ψ⊕M2ω1−ω2+ω3+6ψ⊕M−ω1+ω2+ω3+6ψ⊕Mω3+6ψ⊕Mω1−ω2+ω3+6ψ⊕M−2ω1+ω2+ω3+6ψ⊕M−ω1+ω3+6ψ⊕Mω1−ω3+6ψ⊕M2ω1−ω2−ω3+6ψ⊕M−ω1+ω2−ω3+6ψ⊕M−ω3+6ψ⊕Mω1−ω2−ω3+6ψ⊕M−2ω1+ω2−ω3+6ψ⊕M−ω1−ω3+6ψ | M2ω3⊕M0⊕M−2ω3 | Mω1+2ω3⊕M2ω1−ω2+2ω3⊕M−ω1+ω2+2ω3⊕M2ω3⊕Mω1−ω2+2ω3⊕M−2ω1+ω2+2ω3⊕M−ω1+2ω3⊕Mω1⊕M2ω1−ω2⊕M−ω1+ω2⊕M0⊕Mω1−ω2⊕M−2ω1+ω2⊕M−ω1⊕Mω1−2ω3⊕M2ω1−ω2−2ω3⊕M−ω1+ω2−2ω3⊕M−2ω3⊕Mω1−ω2−2ω3⊕M−2ω1+ω2−2ω3⊕M−ω1−2ω3 |
2/3 & | -1 & | 0\\ |
-1 & | 2 & | 0\\ |
0 & | 0 & | 2\\ |